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The goal of this work is to analyse how solid body rotation affects forced turbulence
enclosed within solid boundaries, and to compare it to results of the experiment per-
formed by Hopfinger et al. (1982). In order to identify various mechanisms associated
with rotation, confinement, and forcing, a numerical pseudo-spectral code is used for
performing direct numerical simulations. The geometry is simplified with respect to
the experimental one. First, we are able to reproduce the linear regime, as propagating
inertial waves that undergo reflections at the walls. Second, the Ekman pumping phe-
nomenon, proportional to the rotation rate, is identified in freely decaying turbulence,
for which the evolution of the flow bounded by walls is compared to the evolution of
unbounded homogeneous turbulence. Finally we introduce a local forcing on a plane
in physical space, for simulating the effect of an oscillating grid, so that diffusive tur-
bulence is created, and we examine the structuring of the flow under the combination
of the linear and nonlinear mechanisms. A transition to an almost two-dimensional
state is shown to occur between the region close to the forcing and an outer region
in which vortices appear, the number of which depends on the Reynolds and Rossby
numbers. In this region, the anisotropy of turbulence is examined, and the numerical
predictions are shown to reproduce many of the most important features present in
the experimental flow.

1. Introduction
Solid body rotation considerably affects the dynamics and structure of turbulent

flows, partly by selection of three-dimensional instabilities that can occur within them.
Generally speaking, the energy transfer from the large scales of turbulence to the
small ones is reduced, and in parallel, the flow tends to become two-dimensional. This
can lead to a selection, by the rotation effect, of a given range of privileged scales of
turbulence. For instance in the atmospheric boundary layer, patterns revealed by the
shape of clouds, seen from the Earth, do not show any particular effect of rotation;
namely, an observer down on the Earth only perceives small scales of the atmospheric
boundary layer. On the other hand, a satellite picture permits observation of the
corresponding large-scale flow whose dynamics is essentially driven by the Coriolis
force associated with the Earth’s rotation (see figure 1 that shows the dominance of
cyclonic organized large-scale structures).

The input of energy in such flows, through localized forcing in physical space, can
produce a kind of turbulence called diffusive, i.e. with no mean flow, which is also
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Figure 1. Cyclonic activity over the North Atlantic Ocean area in 1995. The four cyclones were
christened Humberto, Iris, Karen and Luis (Source Météo-France).

thought to play a crucial role in the formation of vortices, and therefore relevant to
explaining some features of the atmospheric boundary layer. In addition, diffusive
turbulence present in geophysical flows is most important in mixing processes. At
small scales, it is responsible for the quasi-homogeneity of the density field in the
upper oceanic layer whose thickness is of the order of tens of metres, above the
thermocline interface. It acts through the breaking of surface or internal gravity
waves that lie at the level of the thermocline. At larger scales, Hopfinger & van
Heijst (1993), propose modelling the formation of cyclones in the atmosphere as
diffusive turbulence undergoing the rotation effect. Their reasoning, is as follows: let
us consider a convective layer; the turbulent flux it generates is turned into a slow
descending anti-cyclonic motion; when reaching the ground, the fluid is deflected and
a part of it goes, in the shape of more intense cyclones, up to the turbulent layer; the
resulting three-dimensional layer should have a given thickness such that the upward
moving fluxes can, in turn, be transformed into descending ones, and so on. The
experiment by Hopfinger, Browand & Gagne (1982, hereafter referred to as HBG) is
a model of the convective layer, by an oscillating grid, the floor being associated with
the upper tank lid. As a confirmation, these authors do observe intense cyclones.

As in many complex problems, understanding the action of rotation can be helped
by the study of isolated phenomena, as we propose to do in this paper for the inertial
waves, Ekman pumping due to the presence of solid boundaries, and the effect of
a local forcing. We present here a study based on direct numerical simulations,
that illuminate these various isolated effects of rotation on the fluid motion. One
of the main goals of this work is to reproduce the context of the experiment by
HBG, where the simultaneous action of rotation, confinement and local forcing
lead to the appearance of persistent vortex structures, with axes parallel to the
rotation one. This behaviour constitutes a fundamental difference with numerical
studies of homogeneous rotating turbulence (Bardina, Ferziger & Rogallo 1985;
Cambon, Mansour & Godeferd 1997), where the anisotropy develops clearly as a two-
dimensionalization of the flow, but without the emergence of clear organized vortices.
The study by Cambon et al. (1997) has shown the two-dimensionalization tendency
of rotating turbulence, but also that the departure of homogeneous turbulence from
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isotropy is triggered by nonlinearities, although the latter alone cannot explain the
formation of organized structures. It seems that the appearance of such structures is
favoured by the presence of solid boundaries through the Ekman pumping mechanism,
and the limitation of the length scales in the direction of the rotation axis. The
Reynolds stress tensor anisotropy, in the homogeneous case, shows that vertical
motion is still present, and that rotation mainly affects the integral length scales,
in directions either parallel or perpendicular to the rotation axis. Accordingly, these
quantities will in particular be detailed in our study. Following these works on
homogeneous turbulence, new problems therefore arise in the inhomogeneous case,
such as how the flow reacts to the adverse blocking effect of the walls, and the Ekman
pumping phenomenon.

Apart from the simulation of the experiment by HBG, we shall thus isolate the
Ekman pumping effect by simulations of freely decaying turbulence, by comparing
the different behaviours obtained in the homogeneous – without walls – and inhomo-
geneous – with walls – cases.

The influence of solid body rotation on flows involves a combination of linear
and nonlinear effects. When the Rossby number is much smaller than one, the
linear Coriolis term is dominant over the nonlinear and sometimes unsteady terms.
Linear effects include the famous Taylor columns (Taylor 1921), and the inertial
waves (McEwan 1970). The latter are dispersive, dissipative and anisotropic waves,
that transport energy in given directions, depending on the background rotation rate.
They have been extensively described by Greenspan (1968), and Phillips (1963), shows
their original properties when they reflect on solid boundaries, such as the transfer of
energy between wavenumbers and the dissipation of energy.

Simplified analyses can be performed, in order to explain some effects of rotation.
One of these involves the Taylor–Proudman theorem for rotating flows, useful in
specific circumstances only: it applies to two-dimensional steady flows, where a given
external time scale can be identified (such as a towed obstacle in the experiment
by Taylor 1921). It has been used to explain somehow the two-dimensionalization
of turbulence under the effect of rotation, but it is merely a linear argument that
cannot account for the nonlinear transition of initially isotropic homogeneous rotating
turbulence (Cambon et al. 1997). A subject of debate in the scientific community is the
condition for application of the theorem of Taylor–Proudman for strong rotation and
the universality of the conclusions drawn. Using the Taylor–Proudman theorem, one
can show that those inertial waves (linear mode) that are stationary, necessarily have
horizontal wavevectors, representing exactly the two-dimensional mode. Complete
two-dimensionalization of course requires ∂/∂x = 0, when rotation is applied on the
x-axis, and in the following work we will refer only to two-dimensionalization trends –
∂/∂x comparatively small in a wide part of the flow – without actually achieving an
exactly two-dimensional state. The presence of walls in the confined forced simulations,
by adding extra dissipation to the inertial waves, and our local forcing, renders the
two-dimensionalization mechanisms more complex than within the sole scope of the
Taylor–Proudman theorem. This very partial two-dimensionalization is also reflected
in the lack of observation of an inverse cascade in our simulations, contrarily to what
was observed in previous works dealing with rotating homogeneous turbulence with
spectral local forcing (Hossain 1996).

Another, not unrelated, simplified approach is the geostrophic approximation, fre-
quently used in the framework of geophysical flows, and obtained following restrictive
approximations. This method models the flow, subjected to gravity and rotation, as
a superposition of thin layers within which the density variations are small. The
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Reynolds number is assumed to be large and the Rossby number to be small, so that
the rotation effect can be included entirely within the horizontal pressure gradient
terms. This de-coupling of the horizontal and vertical motion allows one to obtain ex-
plicitly the (horizontal) geostrophic velocity. Turbulence is said to be quasi-geostrophic
when its state is strongly two-dimensional, and the pressure is the hydrostatic equi-
librium (Colin de Verdières 1980). This approximation contains the same Rossby and
Reynolds numbers conditions as the geostrophic approximation, as well as the thin
layers one. A quasi-geostrophic approximation is useful to get the time evolution of
the pressure and velocity fields (Pedloski 1986).

The connection of the geostrophic model to a solid boundary, e.g. the ground,
through a non-slip boundary condition creates an Ekman layer in which viscous forces
and the Coriolis force are in equilibrium. Its thickness is estimated as δ =

√
ν/Ω,

and the Ekman number can be defined as E = (δ/L)2 where L is a macroscopic
length scale inside the rotation flow. The Ekman pumping phenomenon comes from
the geostrophic equilibrium of a rotating structure connected to the wall, such that
a vertical component of the velocity is created from the pressure variation inside the
vortex. Depending on the sign of vorticity inside the vortex, it can be either an upward
or downward component. Cyclones are for instance shown to lead to upwelling when
connected to a bottom boundary, and fluid particle trajectories become helical.

Our paper is organized as follows. Section 2 is devoted to recalling the Navier–
Stokes equations in a rotating frame, and some properties of the Coriolis force are
enumerated, including results of linear stability analyses and of nonlinear homoge-
neous approaches. We shall describe the numerical method in § 3. We have adapted a
code initially written for the simulation of turbulent channel flows, by Pascal & Buffat
(1996). It solves the instantaneous Navier–Stokes equations for an incompressible
viscous flow between two parallel infinitely extending walls. The direct numerical sim-
ulation (DNS) code uses a pseudo-spectral method built around the decomposition
of the fields in Fourier modes in the two periodic (infinite) directions, and Chebyshev
modes in the homogeneous direction (normal to the walls). We shall also present
definitions of the statistical quantities. In the following sections, we shall present
applications of the numerical method to flows in order of increasing complexity, in
terms of physical phenomena.

In § 4, the pure linear effect of rotation, through the formation of inertial waves,
is studied by numerical simulations. We check that the energy propagation is in
agreement with linear theory for the dispersion relation of inertial waves, which will
be an assessment of the validity of our numerical approach, at least for the linear and
rotation terms. We shall compare the results of our simulations with experimental
ones by McEwan (1970).

Section 5 will be devoted to simulations of freely decaying turbulence, both in the
homogeneous and inhomogeneous cases, and will focus on the role of rotation and
walls, the latter generating the Ekman pumping effect. Anisotropy and the presence of
vortex structures will be discussed. The walls will be shown to play an important role
in the formation of organized structures, which do not appear in the homogeneous
context.

Finally, § 6 deals with a configuration close to the experimental one by HBG,
including a local forcing, the confinement effect by the walls, and solid body rotation.
We briefly recall previous works on diffusive turbulence obtained by an oscillating
grid, and we present statistical results in the rotating case, analysed with the help of
two- and three-dimensional visualizations. More specifically we shall try to observe
the structural transition that is expected between a region close to the grid, where the
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flow is not influenced by rotation, and a region far away where the Coriolis force is
dominant in the dynamics of the flow, leading to the appearance of vortical structures
almost aligned with the rotation vector.

2. Effects of the Coriolis force on fluid motion
2.1. Equations in a rotating frame

We recall here the motion equations of a Newtonian fluid in a rotating frame. An
extensive presentation is given by Greenspan (1968), to which the reader is referred for
details. The rotation vector is Ω. The quantities u, r, t, p, ρ, ν and f are respectively the
fluid velocity in the rotating frame, position vector, time, pressure, density, kinematic
viscosity and volume forces per unit mass. The mass and momentum conservation
equations, i.e. the Navier–Stokes equations, are therefore

∇ · u = 0, (2.1)

∂u

∂t
+ u · ∇u = −∇Π − 2Ω× u+ ν∇2u. (2.2)

We have supposed here that body forces derive from a scalar potential such that
f = −∇φ, as is the case for the centrifugal force, which can be expressed as
∇ (Ω× r)2 /2. The pressure Π is a modified pressure given by

Π =
p

ρ
+ φ− 1

2
(Ω× r)2.

Non-dimensionalizing the systems brings two non-dimensional numbers, based on a
reference length L and velocity U. Equation (2.2) becomes, in non-dimensional form

∂u

∂t
+ u · ∇u = −∇Π − Ro−1x× u+ Re−1∇2u, (2.3)

assuming, without loss of generality, that Ω is carried by the unit vector x. The
Reynolds number Re = UL/ν is the ratio between inertial and viscous effects, and
the Rossby number Ro = U/(2ΩL) gives the relative importance of the inertial effects
with respect to the rotation ones. One can define an Ekman number Ek = ν/2ΩL2 as
the ratio between the Rossby and the Reynolds numbers.

In equation (2.2), the term −2Ω × u acts in the plane orthogonal to the rotation
axis, and represents the acceleration due to the Coriolis force. Two remarks can be
made about this force. First it does not produce work, since the force is always
perpendicular to velocity, so that it cannot bring energy to the fluid. Second, in the
case of two-dimensional flows in a plane orthogonal to Ω, the Coriolis acceleration
can be included in the modified pressure term, so that it does not appear any more in
the system of equations, which become identical to the equations in the non-rotating
case. This is a reason for the necessity, in linear stability analyses of two-dimensional
rotating flows, for the perturbation to be three-dimensional in order to get any
modification of the base flow by the perturbation.

2.2. Numerical and experimental approaches

A pioneering study on rotation was done by Taylor (1921), for the slow motion of
a cylinder or sphere in a rotating fluid. The solid body motion of the fluid in the
wake of the obstacle is nowadays well known as Taylor columns. Later works on the
effect of rotation on turbulence include Ibbetson & Tritton (1975), Wigeland & Nagib
(1978), Hopfinger et al. (1982), Jacquin (1987). The differences between these various
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experiments lie mainly in the origin of the turbulence. Wigeland & Nagib, as well as
Jacquin, use grid turbulence. Ibbetson & Tritton create the initial flow by a towed grid
in a tank filled with fluid at rest. Hopfinger et al. use an oscillating grid in a rotating
tank. A detailed comparison of these experiments is given in Jacquin (1987), and in
Jacquin et al. (1990), with emphasis on the degree of homogeneity of the turbulence
obtained, and the relative importance of inertial waves. Apart from over-dissipation
due to the reflection of inertial waves observed by Ibbetson & Tritton, these studies
all agree in that rotation creates anisotropy and reduces the energy transfers. In such
an anisotropic flow, evolving towards two-dimensionality, one may look for evidence
of an inverse cascade, as done by Hossain (1996), who considered as well the case of
magnetofluid turbulence that exhibits comparable structural properties. In rotating
flows, a very strong two-dimensional manifold, i.e. when a large part of the energy
is concentrated towards horizontal wavevectors, may contain a discernible inverse
transfer of energy, from small to large scales. A spectral wave-band forcing has also
been identified as a good means of achieving this inverse cascade. However, when
the two-dimensional manifold is immersed in a still non-negligible three-dimensional
field of scrambled inertial waves, as in our simulations, one is not able to observe
this inverse cascading process, and in the following we will not dwell more upon
this point. Though well-suited for reproducing a close-to-isotropic diffusive layer, our
forcing (see § 6.4) introduces unphased periodic perturbations that drown some of the
structural coherence in the whole flow.

Different from fully developed turbulence experiments, linear effects of rotation
have been observed in the form of inertial waves by McEwan (1970) and Heikes &
Maxworthy (1982), who generated them by introducing a local forcing in a rotating
tank. Although their experimental apparatus is different, they both confirm the prop-
agation of energy by waves, in directions prescribed by the rotation rate. McEwan’s
visualizations, using an isolated steering device, exhibit cross-shaped patterns. Note
also that the strong analogy between inertial and internal gravity waves can be seen
by comparing his experiment to that of Mowbray & Rarity (1967). The latter authors
introduce a local forcing in a tank filled with density stably stratified fluid, and observe
the same kind of patterns. The internal gravity waves, in that case, are produced by
the restoring buoyancy force undergone by fluid particles of given density displaced
from their original stable height.

In general, real turbulent flows or industrial ones are not only subjected to the
Coriolis force, but also to many external effects such as those induced by a sheared
mean flow, and the presence of solid boundaries. Couette and Poiseuille flows have
been the focus of many theoretical studies. The combination of shear and rotation has
been studied by Tillmark & Alfredsson (1996) for Couette flow. They show evidence
of the structuring effect of rotation by the emergence of organized structures in the
stable case. In the same way, for rotating channel flow, Johnston, Halleen & Lezius
(1972), confirm the existence of a stabilized region – eventually re-laminarized on the
cyclonic side – and of a destabilized one. Organized vortices in a rotating frame can
combine the effects of shear, rotation and curvature. Isolated vortices were studied by
Kloosterziel (1990) and Carnevale et al. (1997). The review paper by Hopfinger & van
Heijst (1993) establishes links with the stability of actual vortices, either atmospheric
or oceanic.

2.3. Linear stability of rotating flows

Within a given range, solid body rotation can modify the stability properties of coher-
ent structures existing in turbulent flows, although it cannot explain the generation of
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such organised motion. An example from everyday life is atmospheric vortices that,
at average latitudes, seem to be stable because of their longlife, due to the stabilizing
effect of the Earth’s rotation. Kloosterziel (1990) observes that experimentally it is
easy to create a cyclonic vortex by local forcing whereas any attempt at creating
an anti-cyclone leads to mixed inertial waves and turbulence. He also observes that
cyclonic vortices can move, be distorted or pair up, while remaining globally stable.
Linear stability analyses have provided criteria for the stability of some classes of
flows, as in Pedley (1969) in the pure shear case, Kloosterziel (1990) for circular vor-
tices, and Craik (1989) for the elliptic vortex. In the more general case of quadratic
base flows, where the velocity gradient is uniform and has either hyperbolic, straight
or elliptic streamlines, stability criteria are obtained by Cambon et al. (1994) followed
by a numerical study of Taylor–Green vortices in a rotating frame. All these works
recover the classical stability criterion that uses pressureless modes and compares the
relative vorticity W to that of the rotating frame 2Ω. In all cases, the base flow is
two-dimensional and the perturbation has to be three-dimensional in order for the
rotation effect to act at all. For example, in a one-directional sheared flow U = U(y)
in a Cartesian frame rotating at Ω, instability appears locally if the criterion by Pedley
(1969) holds, that is

2Ω(2Ω +W ) < 0,

with W = −dU/dy. The same criterion was found from a semi-empirical analysis by
Bradshaw (1969) and can describe the stabilization or destabilization of rotating shear
flows, even strongly turbulent ones, in agreement with experiments and simulations
by Johnston et al. (1972) or Kristoffersen & Andersson (1993). Finally Leblanc (1997)
and Leblanc & Cambon (1997) extend this criterion to a wider class of non-viscous
two-dimensional flows with complex topologies. Generally speaking, these stability
studies all lead to the conclusion that strong anti-cyclones are unstable, when W is
now taken as the vorticity in the core of the vortex. Our results on forced rotating
turbulence in § 6.6.4 are consistent with this conclusion.

2.4. Nonlinear aspects of the structuring of turbulent flows by rotation

The evolution of complex turbulent and/or unsteady flows is also modified in a
nonlinear manner by background rotation. In the case of homogeneous turbulence,
it is now recognized that rotation can act on the structure of the flow in a nonlinear
way only, by modification of redistribution terms for energy.

Consider the case of initially isotropic freely decaying homogeneous turbulence.
Without rotation, the evolution of such flows has been extensively studied. The
integral length scale, unique in isotropic turbulence, grows with time, approximately
as t0.35, while the kinetic energy decays as t−1.3 (the values of these exponents can vary
depending on the small-wavenumber behaviour of the initial spectrum). When the
Coriolis force is present, it has been shown by Jacquin (1987); Jacquin et al. (1990)
and Cambon et al. (1997), that two Rossby numbers are necessary for describing the
effect of rotation on turbulence. The first effect of rotation starts when a macroscopic
Rossby number RoL, based on the integral length scale, is close to unity. A departure
from isotropy is then indicated by a growth of integral length scales with vertical
separation, and a decrease of those with horizontal separation. This is the sign that a
transition process is triggered, during which rotation acts upon the nonlinear transfer
terms. The end of this period is characterized by a unit microscopic Rossby number
Roω , the ratio of the local vorticity to the background one. The flow is then essentially
driven by linear effects, that combine the viscous decay and the inertial waves (see
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Figure 2. Different regimes encountered by freely decaying initially isotropic homogeneous
turbulence subjected to solid body rotation.

figure 2). However, although rotation creates anisotropy, as shown by integral length
scales, no clear-cut structuring appears, e.g. in the shape of strong and long-lived
coherent structures. On the other hand, Dang & Roy (1985) show that if one chooses
the initial field as the superposition of two-dimensional vortices (large scales) aligned
with the rotation axis, and three-dimensional perturbations (small scales), a strong
rotation kills the perturbations. Only the two-dimensional vortices, initially immersed
in the turbulent field, remain, since the small scales are dissipated by viscous effects,
and are no longer fed energy from the large scales, for the cascade of energy is
damped by rotation.

3. Numerical method and definitions
In the following we describe the method of direct numerical simulations we have

used, focusing on the original decomposition of the fields into a set of functions that
verify implicitly the solenoidal property, as well as the conditions at the walls. Our
method is a pseudo-spectral one. Let us also point out that our simulations have a
Reynolds number which should ideally be much larger, but is still unattainable by
the current computer capacities. In the case of isotropic homogeneous turbulence,
solving both the largest energetic (integral length L) and smallest dissipative scales
(Kolmogorov length η) in the flow imposes a constraint on the resolution depending
on the Reynolds number: Re ∝ (L/η)4/3. The smallest numerical grid size ∆x should
therefore be of the order of η, and if the box has size N∆x, N being the number of
discretized points along one direction of space, we get the relation (L/η) ≈ N ∝ Re3/4

which gives the upper limit for Re. However we have not used large-eddy simulations,
for the introduction of a given subgrid-scale model, still to be greatly improved in
the case of rotating flow, leads to uncontrolled side effects, which sometimes make
the conclusions rather far away from the actual physics of turbulent flows. In the
forced case, we have checked that the energy introduced by the forcing is carried by
a wavenumber that lies within the resolved range, i.e. corresponding to the smallest
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Figure 3. (a) One-dimensional spectra, averaged in the two horizontal directions p = 2, 3, at different
locations from the forcing plane. · · · · , x′ = 6.7; − − , x′ = 3.4 ; −−− , x′ = 0 (x′ is defined as the
distance to the grid). (b) Time series spectra recorded for the horizontal components at different
locations in the flow domain. The time frequency of the grid is found at n = 1.

resolved scales in the flow, at least in the region of the forcing plane. The peak of
the forcing appears clearly on figure 3(a), corresponding to the characteristic space
frequency of the grid. Figure 3(b) also shows time frequency spectra of the horizontal
component of the velocity at different locations away from the grid. On these, the
oscillating frequency of the grid, set to 1, can also be observed.

3.1. Moser, Moin & Leonard’s numerical method for a three-dimensional channel

3.1.1. Equations

We consider the unsteady Navier–Stokes equations for a channel flow between
two parallel plane walls with infinite extent in the y (or x2) and z (or x3) directions.
Hence, the flow is assumed to be periodic in these two directions. The inhomogeneous
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direction, that is normal to the walls, is x (or x1). (Please note that this choice is
different from the usual one, especially for presenting experimental results of channel
flows.) The computational domain has a size 2L1 × L2 × L3. Finally, by a simple
geometrical transformation, non-dimensional lengths are used in the code for mapping
the channel to a more convenient [−1; 1] × [0; 2π] × [0; 2π] size, in accordance with
our use of Chebyshev and Fourier polynomials. The system of equations which is
numerically solved is constituted by the mass and momentum conservation equations
for an incompressible fluid which are in dimensional form

∂u

∂t
+ (ω + 2Ω)× u = −∇Π + ν∇2u,

∇ · u = 0,

 (3.1)

with the constraint that u be zero at the walls. The vorticity ω = ∇ × u is used
for writing the convective terms in the first equation of (3.1), so that the modified
pressure appears here as Π = p/ρ+ |u|2/2− Ω2r2/2, with r = |r|.
3.1.2. Numerical method

The method presented here was first proposed by Moser, Moin & Leonard (1983)
and is also presented by Canuto et al. (1988); an extensive description of the numerical
method is also given in Pasquarelli, Quateroni & Sacchi-Landriani (1987). The goal
is to project the velocity field onto a base of spatial functions that each verify the
boundary non-slip conditions at the walls, and the solenoidal property. By use of this
space of functions, the gradient of the fluctuating pressure disappears from the system
of equations, while still retaining the ability of imposing a mean pressure gradient
in the horizontal homogeneous directions. In all our simulations, we shall however
assume that this gradient is zero, therefore avoiding the appearance of a driving force
that would create a non-zero mean velocity.

The velocity field is decomposed into a combination of Fourier modes in the two
periodic directions, and into linear combinations of Chebyshev polynomials in the
wall-normal direction, such that the non-slip condition is exactly verified by these
modes at the walls. The weak formulation of our system of equations is written
by choosing test functions that are identical to the decomposition ones, making our
method of Galerkin type. As an additional constraint, we impose that the velocity
field, and the test functions, verify implicitly the divergenceless property. The initial
hypotheses are then (with i2 = −1), for the velocity field

u(x, y, z, t) =

nx∑
i=0

ny/2−1∑
ky=−ny/2

nz/2−1∑
kz=−nz/2

αikykz (t)ũi(x, ky, kz) exp
[
i(kyy + kzz)

]
, (3.2)

∇ · [ũi(x, ky, kz) exp i(kyy + kzz)
]

= 0, (3.3)

ũi(±1, ky, kz) = 0; (3.4)

and for the test functions

φ(x, y, z) =

nx∑
i=0

ny/2−1∑
ky=−ny/2

nz/2−1∑
kz=−nz/2

φ̃i(x, ky, kz) exp
[
i(kyy + kzz)

]
, (3.5)

∇ · [φ̃i(x, ky, kz) exp i(kyy + kzz)] = 0, (3.6)

φ̃i(±1, ky, kz) = 0. (3.7)
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The scalar product between functions is defined as

〈u,φ〉 =

∫
Ω

u · φω dΩ, (3.8)

where ω(x) = 1/(1 − x2)1/2 is the weighting function that ensures the orthogonal
property of Chebyshev polynomials in (3.8). By plugging (3.2) in the Navier–Stokes
system (3.1), and upon taking the scalar product with the test functions (3.5), one
gets the following equations:〈

∂u

∂t
,φ

〉
= ν

〈∇2u,φ
〉− 〈(∇× u)× u,φ〉 . (3.9)

The pressure term 〈∇Π,φ〉 cancels out, since it amounts to −〈∇φ,Π〉, where ∇φ = 0
by construction. For each pair of wavenumber components (ky , kz), the following
linear matrix system is to be solved:

A
dα

dt
= νBα+ F , (3.10)

where α = (α0, α1, . . . , αnx) is the vector of unknown spectral coefficients at these given
(ky , kz) – we have dropped the last two indices of α – that appeared in (3.2) – and A
and B are matrices of dimensions (nx + 1)× (nx + 1). Their components write are

Aij = 〈ũi, φ̃j〉
and

Bij =

〈
d2ũi
dx2
− (k2

y + k2
z )ũi, φ̃j

〉
,

and F accounts for the nonlinear terms that are associated with a forcing.

The vector functions ũ and φ̃ are in turn decomposed on the basis of orthogonal
divergenceless vectors. Indeed, due to the incompressibility of the fluid, two vectors
are enough for decomposing the velocity field. (In a complete three-dimensional
Fourier description, the spectral component of the solenoidal velocity lies in the plane
orthogonal to the corresponding wavevector.) The choice of this basis is not unique,
but one has to choose the one that leads to a well-conditioned linear system, i.e. to
sparse matrices. Let (e+

i (x), e−i (x)) and (f+
i (x), f−i (x)) be the divergenceless bases onto

which are decomposed ũi and φ̃i. This yields:

ũi(x) = u+
i e

+
i (x) + u−i e

−
i (x),

φ̃i(x) = f+
i (x) + f−i (x).

These two different bases are orthogonal, so that 〈e+, f−〉 = 0 and
〈
e−, f+

〉
= 0. Using

the notation kh =
√
k2
y + k2

z for the horizontal Fourier component, they can also be

written (prime is used instead of ∂/∂x)

e+
j (x) =


khgj(x)

ikyg
′
j(x)/kh

ikzg
′
j(x)/kh

 , e−j (x) =


0

−kzhj(x)/kh

kyhj(x)/kh

 ,
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f+
l (x) =


khQl(x)

i

ω
ky (Ql(x)ω(x))′ /kh

i

ω
kz (Ql(x)ω(x))′ /kh

 , f−l (x) =


0

−kzPl(x)/kh

kyPl(x)/kh

 .

Given each pair of wavenumber components (ky, kz), this leads to a pair of system
equations that include the two independent components of the incompressible velocity
field, namely α+

i and α−i (hence we have to deal with 2×ny×nz systems of equations).
Depending upon (ky, kz), the following two systems are thus written:

A+ dα+

dt
= νB+α+ + F +,

A−
dα−

dt
= νB−α− + F −.

The basis functions gj and hj are here chosen to be the Chebyshev polynomial Tj(x)
weighted by a simple function of the variable (1 − x2), which verifies the boundary
conditions in the x-direction for the velocity. We then get the following expressions:

gj(x) = (1− x2)2Tj(x),

hj(x) = (1− x2)Tj(x),

gj(x = ±1) = 0, g′j(x = ±1) = 0, hj(x = ±1) = 0.

 (3.11)

Finally, choosing carefully the test functions Ql(x) and Pl(x) allows one to obtain
sparse matrices A+, A−, B+ and B−, though non-symmetric (they have respectively 7
and 4 non-zero diagonals). The choice is combinations of Chebyshev polynomials, as
proposed by Moser et al.:

Ql(x) =
1

4

[
Tl+4(x)

(l + 2)(l + 3)
− 2Tl+2(x)

(l + 1)(l + 3)
+

Tl(x)

(l + 2)(l + 1)

]
,

Pl(x) =
Tl(x)− Tl+2(x)

2(l + 1)
.

The resolution of the two previous linear systems ultimately leads to the spectral
coefficients of the velocity field, which can be transformed back to physical space.

3.1.3. Time scheme

The time variable is discretized using a constant time step ∆t. Assuming the velocity
field at time tn is known, the time-discretized momentum equations are used to get the
field at instant tn+1. Linear and nonlinear terms in the equations are treated differently
(see Kim & Moin 1985). The unsteady term ∂u/∂t is computed as (un+1 − un)/∆t,
while the nonlinear term NLI(un+1) is evaluated by the explicit order-two Adams–
Bashforth one (3 NLI(un) − NLI(un−1))/2. In so doing, it is therefore necessary to
store the nonlinear terms at instant tn−1. The linear operator L = ν∇2 is discretized
by a second-order Crank–Nicholson numerical scheme, with the unknown implicit
part L(un+1)/2 moved to the left-hand side of the equations. Finally, one gets the
discretized equation(

I − 1
2
∆tL
)
un+1 =

(
I + 1

2
∆tL
)
un − 1

2
∆t
[
3 NLI(un)−NLI(un−1)

]
, (3.12)

where I is the unit operator.
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3.2. Computation of statistical quantities

We shall study the turbulent flows obtained in our simulations by examining miscel-
laneous one- and two-point statistical quantities whose definitions are given hereafter.
Due to the cost of the simulations, it is not possible to obtain many realizations of
the same turbulent flow with identical macroscopic parameters, over which ensemble
averaging should ideally be performed. We rather use the spatial homogeneity of
the flow in horizontal planes, and time averaging in the statistically steady runs,
to obtain statistics that seem accurate enough. Therefore, spatial averaging is per-
formed along the homogeneous planes (x2, x3), parallel to the walls, and is denoted
〈·〉. Using Reynolds’ decomposition, any variable φ is split in its mean 〈φ〉 and its
fluctuating part φ′, such that φ = 〈φ〉+ φ′. Root mean square values are obtained as

φr.m.s. =
√〈(φ− 〈φ〉)2〉.

Our analysis of statistical quantities is based on the knowledge we already have
of the evolution of homogeneous rotating turbulence. Accordingly, we shall first
investigate dynamical energetic quantities. The turbulent kinetic energy is q2/2 =
〈uiui〉/2 and is dissipated at rate ε = 2ν 〈SijSij〉 where Sij is the strain rate tensor
Sij =

(
ui,j + uj,i

)
/2. We also compute the skewness of velocity derivatives as (see

Batchelor 1953)

Sui = 〈u3
i,i〉/〈u2

i,i〉3/2 (no summation on i). (3.13)

This coefficient is commonly used for characterizing the energy transfers arising in
homogeneous turbulent flow through triple correlations of the velocity. It is usually of
the order of S ≈ −0.3 in isotropic homogeneous fully developped turbulence, and we
shall compare this value to the ones we obtain in the inhomogeneous configuration.
More specifically, we will distinguish between skewness coefficients based on the
vertical component of the velocity, Sv and those based on the horizontal one Sh.

Then, one-dimensional spectra are obtained by Fourier transforms of the correlation
functions Rij(xp) = 〈ui(x)uj(x + xp)〉 of the components ui and uj of the velocity in
direction xp. The one-dimensional spectrum in that direction is therefore

E
p
ij(kp) =

1

2π

∫ ∞
−∞

Rij(xp)e
−ikpxpdxp. (3.14)

In the following, we will examine E
p
11, E

p
22 and E

p
33 with p = 2, 3 (homogeneous

directions), and we shall discuss the kinetic energy spectrum obtained as the trace
of the above spectral tensors, Ep = E

p
ii/2. The three-dimensional spectrum, computed

by integration over spherical shells in spectral space, in the case of homogeneous
computations will be denoted E(k).

Following Jacquin et al. (1990) and Cambon et al. (1997), who have studied the
case of rotation homogeneous turbulence, we will qualify the regime of our rotating
turbulent flow by using two different Rossby numbers, one a macro-Rossby number,
based on the integral length scale, and the other one based on the Taylor microscale:
respectively RoL = u/(2ΩL) and Roω = ω/(2Ω), where u and ω are r.m.s. values for
velocity and vorticity.

In order to give a precise view of the large-scale anisotropy and structuring of the
flow, directional integral length scales are calculated:

Lii,j(x) =
1

2

∫ ∞
−∞
〈ui(x)ui(x+ rnj)〉〈

u2
i (x)

〉 dr (no summation on i), (3.15)

where nj is the unit vector in direction xj . The total number of these is nine, but we will
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limit our discussion to the two most interesting ones, associated with the correlation of
the horizontal velocity component with vertical and horizontal separation distances.
They are computed as Lh,h = 1

2
(L22,2 + L33,3) and Lh,v = 1

2
(L22,1 + L33,1).

Finally we consider the deviatoric part of the Reynolds stress tensor, defined
as bij = 〈uiuj〉/q2 − δij/3, which is zero in isotropic homogeneous turbulence. The
component b11 will be computed as b11 =

〈
u2

1

〉
/q2 − 1

3
. In our context, b11 is the

most important component to look at, since it shows the relative importance of the
vertical motion compared to the horizontal one, and its value reflects wall effects,
Ekman pumping, and the fact that there exists a vertical component of velocity in
the vertically aligned vortices.

4. Inertial waves
4.1. Predictions of the non-viscous linear theory

Considering a non-viscous fluid, one can derive the dispersion law for inertial waves
from the linearized system of Navier–Stokes equations (2.2) in a rotating frame:

∂u

∂t
+ 2Ω× u = −∇π, (4.1)

∇ · u = 0, (4.2)

where π = p/ρ− (Ω× r)2 /2. Real valued solutions are sought in the shape of plane
waves by writing

u(x, t) = Re {U (k) exp [i(k · x+ σt)]} ,
π(x, t) = Re {Π(k) exp [i(k · x+ σt)]} .

Upon substitution of these in (4.1), and after a bit of algebra (see Greenspan 1968),
one gets the desired dispersion relation

σ = ±2Ω cos θ. (4.3)

In the above equation, θ is the angle between the rotation vector and the wavevec-
tor (see figure 5). This dispersion relation for inertial waves shows the anisotropic
character of these waves, whose propagation is only related to the orientation of
the wavevector, with no explicit limitation on their wavelength, since, a priori, any
wavenumber k = |k| is possible. Only the time frequency σ is bounded and less than
2Ω. This comes from the fact that the wave propagation is ruled by the Poisson
equation

∂2

∂t2
∇2Φ = 4Ω2 ∂

2Φ

∂x2
1

,

where Φ can be either the pressure or the velocity component parallel to the rotation
vector. This equation is hyperbolic only when 4Ω2 > σ2, and, in that case, admits
wave solutions. When 4Ω2 < σ2, it is of elliptic type, and no physical waves can
propagate in the fluid.

Using (4.3) one may derive the phase and group velocities as cφ = (2Ω ·k)k/k3 and

cg = ∇kσ = k × (2Ω× k)/k3. Iso-phase lines, or crest lines, are moving with velocity
cφ, while the energy propagates at cg , i.e. parallel to the lines of constant phase,
illustrating the fact that inertial waves are transverse ones. One distinguishes more
specifically two different regimes. In the case of θ = π/2, the ratio σ/(2Ω) = 0, whence
the corresponding wave is stationary. In that case, the wavevector is horizontal and
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L2 = 8π

2L1 = 2π

Figure 4. Sketch of the numerical experiment geometry used for generating the inertial waves.

the iso-phase lines are vertical and do not move, since their velocity is zero. On the
other hand, the energy propagates vertically, an indicator of possible vertical motion.
The pressure gradient also compensates exactly the Coriolis force, in a geostrophic
equilibrium. When θ = 0, iso-phase lines are horizontal and no energy propagation
is allowed as the group velocity cancels out. The unsteady term compensates exactly
the Coriolis force in that case.

Solid boundaries can interact with the propagation of inertial waves by allowing
a linear transfer of energy between wavevectors, by reflection (see Phillips 1963),
provided the local boundary tangent orientation is neither parallel nor orthogonal
to the rotation axis of the fluid. In that case, the reflected wave has a different
wavenumber than the incident one, producing net transfer of energy within the
inertial wave spectrum.

Analogous to the inertial waves in rotating flows, internal gravity waves appear in
stably stratified flows. Both are very similar in effect, and the reader is referred to the
paper by Veronis (1970) for an extensive discussion of the analogy. For the stably
stratified case, a mean density (or temperature) gradient leads to the appearance of a
characteristic frequency N of the internal gravity waves, and can be associated with a
rotation rate. The mathematical nature of these waves is very close to that of inertial
ones, with the difference that their dispersion relation behaves as σ = ±N sin θ,
leading to reverse tendencies in particular propagation directions with respect to
inertial waves.

4.2. Numerical simulations of inertial waves

4.2.1. Geometry and parameters

On figure 4 we show the geometry we have used for the simulation of the inertial
waves. The computational domain in the horizontal direction is chosen such that
reflection at the walls can occur before the wave reaches the periodic boundary,
leading to an aspect ratio of 4 for the channel. The initiation of the waves, i.e. the
localized forcing, is performed by introducing a sine acceleration at one point, with a
given time frequency (n = 1 here). Each simulation’s duration corresponds to at least
twenty forcing periods, while ensuring again that waves do not reach the periodic
boundaries, a situation which would lead to unphysical results, since periodicity would
artificially modify the kinematics of the waves. The molecular viscosity has been set
to an almost zero value to avoid too strong a damping of the energy propagation, and
the resolution is shown to be possibly relatively low (here 32×64×64 points) without
impairing the accuracy of the results. The parameters of the different simulations are
shown in table 1. Visualizations are done at the end of the simulations, showing the
lines of constant phase, or wave crests. The angle between these and the horizontal
direction is therefore θ (as in figure 5).
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2Ω/n 1.10, 1.33, 2

ν 10−7

Oscillation amplitude A 0.1
Velocity scale 0.1
Reynolds (forcing) nA2/ν ≈ 105

Table 1. Parameters for the linear simulations for the inertial waves regime.

2Ω/n θ theory (deg.) θ measurement (deg.)

1.10 25 26
1.33 41 42
2.00 60 62

Table 2. Measured angles in the visualisations for the different wave propagation directions given
by the different rotation rates.

θ

θ

Iso-phase lines

Ω cg u
cφ

k

Figure 5. Dynamics of inertial waves. Dashes indicate lines of constant phase, aligned with the
group velocity of the waves and the velocity vector.

4.2.2. Results

In the following, angles are manually measured, to very good accuracy, with an error
less than ±2◦. Figure 6 shows lines of constant phase for the inertial waves at three
different values of the rotation rate Ω. The patterns on these three visualizations
strikingly resemble those that are visible on a photograph in the experiment by
McEwan (figure 7). The theoretical and measured angles in the simulations are shown
in table 2.

The comparison in table 2 shows that measured angles are in good agreement with
the dispersion relation and thus confirm the nature of the waves. It also constitutes
an assessment of the validity of the numerical scheme we use, as far as the linear
terms in the equations are concerned. We also observe that reflections at the walls
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= 1.10
2Ω
n

= 1.33
2Ω
n

= 2
2Ω
n

Figure 6. Two-dimensional plot of the lines of constant phase for the inertial waves
(the wavevector is orthogonal to these lines).

Figure 7. Photograph in the experiment by McEwan (1970). The tank is cylindrical,
with its axis aligned to the axis of rotation.
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(b)

y

z

(a)

Figure 8. (a) Three-dimensional plot of the velocity field in the case 2Ω/n = 1.33. (b) Closer view
of the velocity field in a (y, z)-plane away from the grid. The rotation of the velocity vector (phase
change) can be observed along the radial directions.

are symmetric (with the angle of the incoming wave equal to that of the reflected
one), as can be predicted from the fact that the rotation vector is orthogonal to the
walls. Thus, there is no transfer of energy between wavenumbers by the reflection
mechanism. The three-dimensional plot on figure 8(a) shows that the energy of the
wave lies mainly on a cone. A closer view of the velocity field in a horizontal section
of this cone, in the upper region, is shown on figure 8(b). It can be observed that
the phase of the velocity vector is constant over each circle, whereas it rotates when
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Figure 9. Dissipation profiles from the source to the upper wall for the inertial waves.
−−− , Ω = 0; · · · · , Ω = 1.103; − − , Ω = 1.33; · − · , Ω = 2.00.

moving away from the central axis. Note also that the core region is subjected to
more random motion, as a remnant of the forcing used for generating the waves.
Another interesting feature to notice is that the presence of the inertial waves, and
their interaction with the wall boundary layer, induces extra dissipation, as illustrated
on figure 9. Indeed, the larger the rotation rate, the closer to the vertical the wave
direction is. Therefore, the number of reflections on the walls depends on the rotation
rate, as can be checked on figure 6. Figure 9 also shows that the dissipation is
largest in the case 2Ω/n = 2, which is also the case where more dissipation occurs
at the walls. These plots do not tell us whether the dissipation is related directly to
the rotation rate, but merely show that reflection of inertial waves is a dissipative
process.

5. Freely decaying turbulence
We take here freely decaying turbulence, with or without rotation, and consider

both the homogeneous case, and the inhomogeneous one with plane walls. The
presence of solid boundaries can be important in the generation of anisotropy:
indeed, many studies have shown that rotation can create anisotropy in initially
isotropic homogeneous fields, but without visible evidence of a structuring; on the
other hand, walls certainly play a role by means of Ekman pumping, even though
this effect is counteracting the two-dimensionalization trend directly due to solid
body rotation. Our numerical simulations are run with and without rotation, and in
confined and fully homogeneous cases, aiming at isolating the effect of the walls on
the structuration of the flow.

The homogeneous simulations are performed using a standard pseudo-spectral
code with periodic conditions in all three directions, the Coriolis force being treated
in an explicit manner (Rogallo 1981; Bartello, Métais & Lesieur 1994).
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5.1. Initialization method for the velocity field

In the homogeneous case, let ui be the velocity variable in physical space, whose
spectral coefficients are

ûi =
1

(2π)3

∫
<3

ui e
−ik · x d3x. (5.1)

In order to get an initial velocity field, we use the method by Rogallo (1981) who
defined two random components of the velocity field, in the plane orthogonal to k,
due to its divergenceless property. Therefore, by using a local frame of reference,
whose unit vectors can be defined, say, as

e1(k) =
k ×Ω
|k ×Ω| , e2(k) =

k × e1

k × e1
, (5.2)

û then reads

û = ϕ̂1e1 + ϕ̂2e2. (5.3)

The random amplitudes of each velocity components in this local frame are chosen
as

ϕ̂1 =

√
E(k)

4πk2
eiθ1 cos α, ϕ̂2 =

√
E(k)

4πk2
eiθ2 sin α. (5.4)

At the initial time, α, θ1 and θ2 are picked in a random sequence with uniform
distribution between 0 and 2π. The principle of this method is to construct a given
distribution of the velocity field with zero triple correlations, but with double corre-
lations specified through a given spectrum of kinetic energy E(k). Indeed, ϕ̂1 and ϕ̂2

have to be such that ∫
(û · û∗) dA(k) = E(k), (5.5)

where dA(k) is a spherical shell of radius k and thickness dk. Adjusted parameters in-
clude the energy in the spectrum, and the position of the peak of energy (alternatively
the velocity r.m.s. value u and a given integral length scale). One thus obtains an
incompressible velocity field which is also homogeneous isotropic. The phase α is the
orientation of û in the plane orthogonal to k, whereas θ1 and θ2 are modified, from
their initial value, by the phase scrambling induced by rotation. This same method
is used for initializing the confined simulations, but an operation of re-projection of
the resulting homogeneous random velocity field is performed, on the basis described
in § 3.1.2, so that one gets a field which is compatible with the boundary conditions.
The resulting loss of energy is small enough to be ignored.

5.2. Parameters of the simulations

The computational box is a cube of side 2π. The simulations resolution is 963 points.
The spectral step (or minimum wavenumber) in the horizontal directions is ∆k = 1,
and the largest resolved wavenumber is kmax = 48. We choose a given analytical
spectrum for initializing the simulations (Orszag & Patterson 1972):

E(k, 0) = 1
2
As

u2
0

kpeak

(
k

kpeak

)s
exp

(
− 1

2
s

(
k

kpeak

)2
)
. (5.6)

The parameter s = 4 is the slope of the spectrum at small wavenumbers. The peak
of energy is placed at kpeak = 9.5 and the total initial energy in the box is q2/2 = 1.5
(corresponding to a r.m.s. velocity u0 = 1). Given the spectrum (5.6), the integral
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Figure 10. Evolution of the various directional integral length scales for the freely decaying
simulations, both in the inhomogeneous (thick lines) and in the homogeneous (thin lines) cases, and
with or without rotation.

No walls (homogeneous) With walls (inhomogeneous)

No rotation NRH NRI
With rotation RH RI

Table 3. Labelling of the different decaying turbulence runs.

length scale at the beginning of the computation can be obtained by the relation (see
Batchelor 1953)

Lf0
=

3π

4

∫
0

∞
E(k)/k dk∫

0

∞
E(k) dk

,

which gives Lf0
=
√

2π/kpeak = 0.26 (see figure 10) and amounts to 5% of the
distance between the walls. No confinement effects are therefore felt by the flow at
the beginning of the decay. Finally, the initial Reynolds number is

Re =
u0Lf0

ν

with a given molecular viscosity ν. In all our simulations, we choose ν = 0.0025,
yielding an initial Reynolds number of 120.

In the following, computations will be labelled as shown in table 3. We have not
performed here any pre-computation, as is sometimes done to allow the turbulent field
to evolve to a more physical one, for we compare results from both wall-bounded
and homogeneous simulations, which need to have as close initial conditions as
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Figure 11. Evolution of the kinetic energy for the four freely decaying simulations.

possible. Initial pre-computations would provide a more realistic initial field, but with
the drawback that statistical quantities of turbulence may already have evolved in a
significantly different manner. This will allow us to analyse the effects of confinement
by close comparison of both simulation situations. The initial conditions are therefore
exactly prescribed by (5.6) in both computations. All the simulations have been
performed over 90 eddy turnover times, which is the ratio τ(0) = Lf0

/u0 at t = 0,
yielding the numerical value τ(0) = 0.3.

The initial integral length scale based Rossby number is tuned approximately so
that we anticipate that rotation should affect the flow dynamics after about 10 eddy
turnover times, the flow being in a fully developped state at this time. Twice the
rotation rate is 2Ω = 0.3, yielding RoL = u0/(2ΩLf0

) = 11.

5.3. Results of the simulations

5.3.1. Kinetic energy

Figure 11 shows the evolution of the kinetic energy for the four simulations. This
evolution is about the same in all four cases, indicating that the rotation has no
significant effect on the energy cascade. The Reynolds number is too weak in the
NRH and RH simulations to allow one to observe a discernible effect of rotation
before the turbulence has lost too much energy to viscous dissipation. Indeed, figure
12 shows that the energy spectrum at t/τ(0) = 20 exhibits a peak at k = 2. The
decrease of the peak wavenumber towards the small values is expected and indicates
the growth of the length scales in the flow. The peak cannot decrease any further, nor
can the length scales grow; this demonstrates that the homogeneous computation is
no longer realistic and physical after this time.

Let us also underline that the long-time behaviour of the length scale Lh,v (figure 10)
in the NRH simulation is strongly linked to the initial realization of the flow.
Indeed, in the non-rotating case, turbulence decays faster, since the inhibiting effect
of rotation on the energy transfer is not present. This limitation can be interpreted
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Figure 12. Three-dimensional energy spectra for run NRH at t/τ(0) = 0 (circles)
and t/τ(0) = 20 (squares).

Figure 13. Velocity field in a plane of the simulation NRH at t/τ(0) = 20, showing that only
large-scale variability remains in the flow after such a long decay.

as a confinement of the turbulence scales by the size of the computational box. The
mode k = 1 corresponds to a maximum wavelength (related to the size of the box),
and k = 2 to half this length. This is well illustrated in the visualization of the velocity
field of figure 13, at t/τ(0) = 20, for the homogeneous computation. Note also that
the integral length scales are then of the order of 0.75 (i.e. 12% of the box size).
On the other hand, the inhomogeneous simulations can be pursued longer since the
walls play an inhibiting role in the growth of the large scales. Figure 14 shows the
velocity field for the NRI simulation at a much later instant than the homogeneous
computation, since t/τ(0) ≈ 90. The turbulent structures are much more numerous
and reasonably smaller with respect to the box dimension.
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(b)

(a)

Figure 14. Velocity field for simulation NRI at t/τ(0) ≈ 90, (a) in an inhomogeneous (vertical)
plane; (b) in a homogeneous (horizontal) plane.

5.3.2. Skewness

The evolution of the skewness is given on figure 15 for the first 8 eddy turnover
times τ(0). The evolution of this quantity is in good agreement with that observed in
homogeneous isotropic turbulence, even at low Reynolds number (see e.g. Tavoularis,
Bennet & Corrsin 1978). Indeed, the skewness is always negative and begins to
stabilize after 4 or 5 eddy turnover times, whence a fully developed turbulence
state. This justifies the initial value of the Rossby number (≈ 11) for the rotating
computations, since rotation does not have much effect during the period in which
the triple correlations build up (the Rossby number reaches a value of 4 when the
skewness is stabilized). The difference between Sv and Sh (see definition (3.13)), is of
course non-existent in homogeneous isotropic turbulence. The lower absolute value of
Sv may be explained by the limitation of vortex stretching in the direction orthogonal
to the walls.

5.3.3. Integral length scales

The growth of vertical integral length scales due to rotation has already been
identified in previous works, e.g. by Bardina et al. (1985) for homogeneous flows,
and our homogeneous simulations with rotation lead to the same integral length
scale separation. Regarding the simulations without rotation, NRH and NRI, we see
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Figure 15. Evolution of the velocity-derivative skewness over the first eight eddy turnover times.
−−− , Sh; − − , Sv .

on figure 10 that the walls induce a different behaviour for the length scales Lh,h
and Lh,v . After a first short period of growth, due to the development of turbulence,
of about 10 eddy turnover times, in both the inhomogeneous and homogeneous
cases Lh,h grows at an almost constant pace. Whereas in the homogeneous case no
obvious effect of rotation is observed on this length, Lh,h has a smaller value in the
inhomogeneous rotating run RI than in run NRI. The length Lh,v presents much
more marked differences. First, in the wall-bounded case, it does not increase at the
beginning as in the homogeneous case, indicating a strong confinement effect of the
boundaries in the vertical direction. A modification of the growth of Lh,v by rotation
is seen at about t/τ(0) = 20, remarkably when Rov ' 1, in both the homogeneous
and the inhomogeneous cases. The trend is the same, since it appears that rotation
increases Lh,v with respect to the non-rotating case, a clue to vertically elongated
structures in the flow.

5.3.4. Anisotropy b11

The evolution of the anisotropy of the Reynolds stress tensor, b11, is presented on
figure 16 for runs NRI, RI and RH. In isotropic turbulence, b11 is of course zero. In
the case of homogeneous turbulence subjected to rotation, this indicator is slightly
positive, denoting the preponderance of the vertical component of velocity over the
horizontal ones. In runs NRI and RI it is always negative. Without rotation, b11

reaches its smaller algebraic value, showing the damping of the vertical motion by
the horizontal boundaries. In the rotating case, the evolution of b11 shows that the
vertical components become stronger under the combined effect of rotation (as in
the homogeneous case) and Ekman pumping. Rotation, associated with the action
of the walls, thus creates an effect that competes with the damping of the vertical
component by these very boundaries. The Ekman pumping phenomenon produces
the vertical velocity component.

5.3.5. Spectra

Figure 17 shows that the spectra of turbulence and dissipation evolve quite fast
to a developed state. After 2 eddy turnover times, the energy spectrum exhibits a
− 5

3
slope which was not present initially of course, due to the choice of the initial

condition (figure 17a). It is worth noticing that after 2 eddy turnover times, the
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Figure 16. Evolution of the Reynolds stress tensor anisotropy component b11: −−−, run NRI;
− −, RI; · · · ·, NRH; · − ·, RH.
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Figure 17. One dimensional spectra of: −−−, kinetic energy, and − −, dissipation, following the
generation of the turbulent field by Rogallo’s method. (a) t = 0; (b) t = 2τ(0).

dissipation is not very well resolved (location of the peak of the spectrum 2νk2E2(k)
on figure 17b). However, the following evolution of the computation shows that this
lack of resolution does not influence the quality of the results, so that we can keep
the advantage of having a rather high initial Reynolds number.

5.3.6. Rossby number

To characterize the structuring of rotating homogeneous turbulence, Cambon et al.
(1997), define two macro Rossby numbers, based on vertical or horizontal velocity
and length scales:

Rov = u1/(2ΩL11,1) and Roh = u2/(4ΩL22,1),

which are identical in isotropic homogeneous turbulence. The most useful one is
Rov , in agreement with Jacquin’s discussion in his experimental study. Accordingly,
we show the evolution of the Rossby number Rov for the inhomogeneous run on
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Figure 18. Evolution of the Rossby number Rov in the decaying case RI.

figure 18. At high Reynolds number, we recall that the analysis of the effect of
rotation needs two Rossby numbers. One is based on the integral length scale and the
other on the Taylor microscale. In our case, the Reynolds number is weak and these
Rossby numbers are similar, since the ratio Rov/Roω is proportional to L/λ ∝ √Re
when the Reynolds number is large enough. We can however notice that differences
in behaviour of statistical quantities between runs NRI and RI all appear when
the Rossby number Rov is close to the critical unit value. Indeed, apart from the
evolution of the horizontal length scales that begin to depart from each other when
the Rossby number reaches 2, the rotating and non-rotating computations exhibit
different evolutions of Lh,v and b11 a bit later, when Rov ≈ 1. The mechanisms of
nonlinear transfer of energy are weak, and the departure of the length-scale anisotropy
and of the velocity components may be put down also to wall effects rather than the
mere effect of rotation. Even if the value of the critical Rossby number found here
reminds one of the beginning of the transition zone found in homogeneous rotating
turbulence (see figure 2), surely this critical value depends strongly on the confinement
of the flow in between the walls. Therefore, before concluding too straightforwardly
that this anisotropization mechanism is of same nature as that observed in high
Reynolds number homogeneous turbulence, one has to quantify the two main effects
of the solid boundaries on the evolution of the flow. First, if one computes an Ekman
number based on the wall distance, one gets an indication of the strength of the
confinement. This number E = ν/(ΩL2

1), can be seen as the square of the ratio

between the thickness of the Ekman layer δE =
√
ν/Ω and the half-wall distance L1.

In our case, E ≈ 1.7 × 10−3, which gives δE of the order of 2% of the wall distance
2L1. The extent of the Ekman layer is therefore small, and its effect negligible in the
dynamics of turbulence. Second, we discuss the Ekman pumping mechanism in the
next section.

5.3.7. Ekman pumping

Rotation plays a role through the presence of walls in run RI, by means of Ekman
pumping. In order to confirm the existence of this phenomenon in the simulation,
the correlation between the vertical components of velocity and vorticity is examined.
In order to get correlations over each plane, and avoid the vertical variation of their
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Figure 19. Correlation between vertical components of velocity and vorticity: (a) close to the
bottom wall for run NRI; (b) close to the upper wall for run NRI; (c) close to the bottom wall for
run RI; (d) close to the upper wall for run RI.

r.m.s. values, u1 and ω1 are non-dimensionalized by mean values of the velocity and
vorticity in horizontal planes, namely u∗1 and ω∗1 .

Figure 19 shows these correlations for runs NRI and RI at t/τ(0) = 90. Even
though the turbulence is rather weak at this time, the plots confirm the combined
action of rotation and the wall in the form of Ekman pumping. The graphs are
plotted in the seven planes closest to the walls, the farthest one being at 5% of the
box size away from the wall (the Ekman layer thickness has been estimated at 2%
of the wall distance). Regarding the non-rotating case, NRI, it is clear (see figures
19a and 19b) that u∗1 and ω∗1 are uncorrelated and that we indeed have u1ω1 ≈ 0. A
strong correlation is clear on figures 19(c) and 19(d), indicating the action of Ekman
pumping. For instance, we have u1ω1 > 1 close to the lower wall. This is in agreement
with Ekman pumping since positive components of vertical vorticity (cyclonic in our
notation) are associated with ascending motion, and vice versa. It is of course the
other way round for correlations obtained close to the upper wall, where, in turn, we
have u1ω1 < 1.

Note that the least-squares lines on figures 19(c) and 19(d), have decreasing slopes
when moving away from the walls; this indicates the decreasing effect of the pumping
at large distances from the solid boundary. Note also that there is a net production
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of helicity 〈u · ω〉 by Ekman pumping close to a wall, whereas this quantity can never
be created by rotation in homogeneous turbulence.

These results constitute a fundamental difference with those obtained in the ho-
mogeneous case where coherent structures may not be visible, even if there exists
anisotropy in the integral length scales. Here, even at weak Reynolds number, and at
an instant when turbulence is almost extinguished, the Ekman pumping is active and
produces vortex structures with axes parallel to the rotation vector.

6. Confined forced rotating turbulence
The study of the characteristics of turbulence without mean motion is very im-

portant for fundamental analyses. Turbulent transport may then be produced by
inhomogeneities in the flow; for instance, when two layers of different turbulent
intensities, in terms of r.m.s. velocity values and integral length scales, are adjacent.
Such self-convected turbulence is said to be diffusive. Diffusive turbulence may be
produced by various experimental means, leading to different flow characteristics,
especially regarding the isotropy of the layer created in the vicinity of the generating
apparatus. Some related work is described hereafter.

6.1. Review of diffusive turbulence work

In order to set up an experimental apparatus and methods for measuring turbulence
in water, using hot wire probe, Bouvard & Dumas (1967) have built a ‘turbulence
tank’ with square section in which a perforated plaque oscillates vertically. In view
of the high interest in obtaining vertical variations of the r.m.s. of the fluctuating
velocity, they have looked for a theoretical explanation of their results. The basis of
reasoning is that at each level, the motion is statistically stationary and results from
the equilibrium between the input of turbulent kinetic energy by diffusion from the
bottom of the tank, and its destruction by molecular viscosity, the turbulence being
assumed to remain isotropic. By introducing a diffusion coefficient, and despite the
crudeness of the hypotheses, the theoretical result is in strikingly good agreement
with the experiments. The latter were conducted using a perforated plaque, but it
appears that the characteristics of the turbulence generating device influence strongly
the fluctuating quantities. Thompson & Turner (1975), have performed experiments
whose goal was to find the relation of different spatial profiles with the frequency
and amplitude of the grid; they also find a dependence upon the shape of the rods
the grid is made of. An x−1.5 power law, where x is the distance from the grid, is
found for the decrease of the r.m.s. quantities and a linear growth for the integral
length scales. The r.m.s. values are proportional to the excitation frequency in the
case of square section rods. Hopfinger & Toly (1976), used the same experimental
setting as Bouvard & Dumas (1967), replacing the perforated plaque with a square
rod grid. They tried to find the influence of each of the characteristic parameters of
the grid, including the mesh size; the frequency f, mesh size M and stroke S are called
external parameters. The linear dependence of the r.m.s. quantities on the frequency,
as proposed by Thompson & Turner (1975), is confirmed, and the authors propose
the following general form:

u

fS
= CS1/2M1/2x−1.

Since the turbulence is anisotropic, De Silva & Fernando (1994) have considered this
same form again, but distinguishing the u0 – vertical – and v0 – horizontal – velocity
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components (the zero index refers to properties of stationary turbulence):

u0 = C2S
3/2M1/2fx−1,

v0 = C1S
3/2M1/2fx−1,

l0 = C3x,

where f is in Hz, C1 ≈ 0.22, C2 ≈ 0.26 and C3 ≈ 0.10. The length l0 is the integral scale
of turbulence. These constants have to be adjusted depending on the geometry of the
grid and the shape of the rods. Note that the Reynolds number based on u0 and l0
is uniform in the turbulent layer. McDougall (1979) studied the relationship between
the excitation frequency and the r.m.s. profiles. Using a device allowing tuning of the
frequency continuously between 1 Hz and 10 Hz, he shows that the linear dependence
found by Thompson & Turner (1975) and Hopfinger & Toly (1976) is no longer valid
above a given value of the excitation frequency (7 Hz). More recently, Drayton (1993)
has re-done the experimental study on an oscillating grid, but adding a Lagrangian
point of view to the previous Eulerian one. Let us also quote the theoretical work
by Long (1978), who constructs a model that agrees quite well with the various
experimental observations, with respect to the linear growth of the integral length
scales and the decay of the r.m.s. velocity as x−1.

All these experiments have recently been complemented by numerical ones. Using
direct numerical simulations with periodic conditions in the three directions, Briggs
et al. (1996) have studied the mixing layer without mean shear or rotation. The mixing
layer is a region between two turbulent layers of different turbulent kinetic energy
intensities. The most energetic one is forced by injecting energy at a given frequency,
by remote analogy with an actual oscillating grid. We notice that the r.m.s. velocity
decreases as x−1.35.

We now provide details about the experiment by HBG who observe a modified
behaviour of the flow when placing the whole previous experimental apparatus on a
turntable.

6.2. Oscillating grid turbulence with rotation

The experimental apparatus of HBG is as follows. A cylinder of 40 cm diameter and
80 cm depth is made out of transparent material. It contains an oscillating grid system
whose mean position is located 15 cm above the bottom. The whole installation is
subjected to solid body rotation. The grid has 1 cm section rods, 5 cm apart. The
amplitude A of the oscillation and its time frequency n can be changed over a wide
range (up to 20 rad s−1 for n and 5 cm for the stroke S , which is twice the grid
amplitude).

Hopfinger & Toly (1976) define the fluctuating velocity and integral length scale as

ur.m.s. =
K1n

x
, l = K2x. (6.1)

The amplitude is fixed to 4 cm and, for this value, since K1 and K2 depend on it, they
find

K1 = 0.83 cm2, K2 = 0.26. (6.2)

A transparent top is placed on the tank in order to help visualizations and to avoid the
undesirable β effect, which anyhow later on appeared to be negligible. Experiments
are performed with different frequencies and rotation rates as enumerated in table 4.
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n (rad s−1) 3, 30× 2π, 6.63× 2π
2Ω (rad s−1) 0.2π, π, 2π, 20π

Table 4. List of frequencies and rotation rates used in the experiment by HBG.

Characteristic velocity and length u and l are defined far away from the grid, so
that the flow dynamics depends on five non-dimensional parameters:

Grid Rossby number Ro = n/2Ω ≈ 3–33,
Reynolds number Re = ul/ν ≈ 103,
Ekman number Ek = ν/(2Ωl2) ≈ 10−5,

Rossby number Rol = u/(2Ωl) ≈ 5× 10−2,
Aspect ratio H/l ≈ 3–6.

6.3. Experimental observations

The grid Rossby number is defined as Ro = n/(2Ω). Far enough from the grid,
observations show a given number of vortices, mainly cyclonic, whereas no obvious
organised structures are visible in the lower part. When the oscillating frequency
increases, or equivalently when the rotation decreases – both leading to an increase of
the grid Rossby number – anticyclonic vortices appear that tend to concentrate in an
outer annulus in the tank. These vortices are less intense than the cyclonic ones. Such
a transition appears at a given distance from the tank walls, still to be determined.
In the region close to the grid, the flow is rather unaffected by rotation whereas it is
dominated by the rotation away from the grid. A local Rossby number may then be
defined as

Rol(x) =
u(x)

2Ωl(x)
.

Considering the relations given by Hopfinger & Toly (1976) and assuming a constant
transitional Rossby number, we get

RoT =
u(xT )

2Ωl(xT )
=
K1

K2

n

2Ω

1

x2
T

= constant.

From the values of xT for different rotation rates and given K1 and K2 from (6.2),
one gets the following value for the transitional Rossby number:

RoT = 0.2.

This numerical value cannot directly be identified as that found in the case of
homogeneous turbulence, since, on the one hand, our specific context is a confined
forced flow, and on the other hand it corresponds to an abrupt structural transition,
which is not visible in homogeneous turbulence.

6.4. Numerical approach to the experiment

Yang (1992) has recently performed a numerical simulation in a context close to the
experiment by HBG. He uses a pseudo-spectral code with two homogeneous directions
along which the flow is assumed to be periodic (Fourier decomposition), and an
inhomogeneous direction along the rotation axis (Chebyshev mode decomposition).
Such a simplified configuration cannot reproduce the lateral confinement effect as
in the experiment, but allows boundary conditions on the top and bottom. It also
does not require the spatial vertical periodicity of the forcing process as was the case
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in the simulations by Briggs et al. (1996) using a three-dimensional Fourier code.
In order to model the oscillating grid, Yang (1992) introduces a complicated local
forcing aimed at generating isotropic turbulence with given energy level in a plane
close to the bottom wall. This turbulent region corresponds to given time and length
scales. Such a forcing procedure is justified from the experimental statement that
turbulence generated by an oscillating grid is very much like isotropic turbulence,
close to the grid. Although Yang’s results were encouraging enough to suggest a
follow-up of this work, his computations dramatically suffer from the coarse vertical
resolution he had (only 17 spectral points), which constitutes a severe handicap as far
as the statistical analysis is concerned; namely the evaluation of spatial decay laws
for statistical quantities, and too low a Reynolds number, limited by the resolution.
The forcing also has an important drawback, since it does not implicitly involve
parameters related to the grid, such as the mesh size, amplitude and frequency of
oscillations, whose major influence on the flow has been widely demonstrated in
many experiments on oscillating grid turbulence – as discussed in § 6.1. The statistical
analysis can be improved as well, by extending it to spectra and directional integral
length scales, and the three-dimensional visualizations can be improved.

Using an analogous numerical simulation code, we have reproduced the same
geometrical configuration, using a more ‘physical’ forcing that depends upon the
above-mentioned grid parameters, and higher resolutions permitted by parallel com-
putations with distributed computer memory. In order to reproduce the experiment
with our numerical simulations, we solve system (3.1), including a forcing term f that
does not derive from a potential. This term needs to contain spatial and temporal
information as close to those of the oscillating grid as possible. The chosen shape
of the forcing is a superposition of a deterministic function that explicitly contains
the grid parameters (mesh size M, amplitude S/2 and time frequency n), and of a
random component β, which is a random variable with uniform distribution over an
amplitude of order of 25% of S . Acting in the plane x = xg (g for grid), this term is

fi(xg, y, z, t) =
n2S

2

(
δi1 cos

(
2π

M
y

)
cos

(
2π

M
z

)
sin(nt)

)
+ βi. (6.3)

Alternatively, this kind of forcing is also analogous to the experimental one used by
Colin de Verdières (1980), with alternating sources and sinks. Apart from the lateral
boundaries, we use a geometry close to that of the experimental apparatus in HBG.
It is shown on figure 20. The complete system, with rotation, is characterized by seven
parameters, namely the vertical dimension L1, the horizontal one L2 = L3, the mesh
size M, the stroke and time frequency of the grid, S and n, the kinematic viscosity ν
and the rotation rate Ω. Given that we have two fundamental dimensions, a time and
distance, we therefore need five non-dimensional numbers. Three of them come from
purely geometrical considerations, the other two being the Reynolds and Rossby
numbers, related to the dynamics of the flow. Choosing S and n as the reference
length and time frequency scales, these numbers are defined as

Re =
nS2

ν
and Ro =

n

2Ω
. (6.4)

All the following quantities presented are non-dimensionalized with the help of the
reference length S , and n. The simulations are performed using a numerical domain
of size 13.4× 8× 8 (x ∈ [−6.7; 6.7], y ∈ [0; 8], z ∈ [0; 8]) with a mesh size identical to
the grid stroke (generally the case in most oscillating grid experiments). The forcing
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Figure 20. Schematic of the computational domain in the numerical experiment on rotating
forced turbulence. The grid is located closer to the bottom wall, as in the experiment by HBG.

Run Ro Re Resolution No. of periods Computer

SR ∞ 1100 96 × 96 × 96 88 DEC server 8200
R50 50 10000 96 × 128 × 128 120 CRAY T3E
R20 20 1100 96 × 96 × 96 64 DEC server 8200
R3 3.32 1100 96 × 96 × 96 44 DEC server 8200

Yang ∞ to 1.63 ≈ 170 17 × 48 × 48 10 —

Table 5. Parameters of the simulations with forcing.

plane is located at xg = −3.35, and we shall denote x′ = x − xg the abscissa with
respect to the forcing plane.

Simulations are referenced as shown in table 5, depending on the Reynolds and
Rossby numbers. Runs SR, R20 and R3 have been done on the sequential computer
DEC8200 at LMFA. Each iteration needs 30 CPU s, leading to total durations of the
runs from ten to a hundred hours. Run R50, at higher resolution, was done on the
Cray T3E of IDRIS.

The Reynolds number computed as Re = ul/ν was of the order of 103 in the
experiment by HBG. In our simulations, it is much smaller, of the order of Re ∼ 20,
due to the fast decrease of energy away from the grid, at which Re ∼ 100. We shall
see in the following results that this low value does not affect the good qualitative
agreement of the simulations with the laboratory results.

The simulations start from fluid at rest in the rotating frame. The total energy grows
and stabilizes quickly (within two or three periods of forcing), but the statistical
stationary state is not reached at this time. The integral length scales, and more
specifically L11,1, evolve on a slower basis. We thus choose to assume that the
statistical stationary state is reached when this length scale is stabilized. Looking at
L11,1 in time shows that it is necessary to evolve over 50 grid periods, making it 15
times the required convergence time for energy.
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Figure 21. Spatial evolution of mean profiles of the length scale L11,1 and of the r.m.s. velocity
components, in the forced non-rotating case.

The same length scales as in the previous section for freely decaying turbulence
are studied, namely Lh,h and Lh,v . They are useful in providing information on the
spatial coherence in the horizontal and vertical directions respectively. The spatial
variations of the kinetic energy, and of the r.m.s. velocity are also studied, as well as
the evolution of the Rossby number.

6.5. Non-rotating case

The non-rotating simulation is a pre-requisite to the rotating simulations, which
allows one to estimate the level of energy in the forcing plane and the behaviour of
the r.m.s. velocity and length scales in the case of pure diffusive turbulence. It also
provides valuable information on the evolution of these quantities. Figure 21 shows
both the r.m.s. components uv = u1 and uh = (u2 + u3)/2, and the length L11,1 profiles.
Their behaviours are linked, for it is possible to identify three zones in the domain.
In the first one, labelled (I), the velocity decreases following a power law, while L11,1

increases. However the exponent of decrease of kinetic energy is found to be quite
different from the one observed experimentally in diffusive turbulence. In zone (III),
the components of the velocity, as well as the integral length scale, decrease to zero
when approaching the wall. The intermediate zone (II) is more interesting. From
x′ = 4 to 8, say, we notice an exponential decrease of the energy, while L11,1 decreases.
We can explain this behaviour with the following simple argument.
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In the case of high enough Reynolds number diffusive turbulence, Thompson &
Turner (1975) propose (see also Batchelor 1953)

d(u3)/dx = −Bu3/l, (6.5)

where B is of the order of unity. In that case, energy decreases spatially by inertial
dissipation, since the terms −Au3/l or −Bu3/l can be interpreted as the action of an
eddy viscosity ul on a shear u/l (with −u3/l = −ul(u/l)2). Experiments on oscillating
grids have shown that the scale of these structures increases away from the grid, and
that energy decreases following a power law. This is retrieved here by stating that
l = βx. We then get the evolution equation for u in the form

u = u0(x/x0)
−B/3β. (6.6)

Keeping constant the length scale of the flow, l = α = constant, the spatial evolution
law becomes

u = u0e
−B/3α(x−x0). (6.7)

Although equation (6.5) is obtained at high Reynolds number, the spatial evolution
of L11,1 and of the energy are closely related. The blocking of the integral length scale
seems therefore to be responsible for this behaviour, in agreement with experimental
results by Risso (1994).

Other lengths, specifically with horizontal separation, behave strangely with respect
to the usual behaviour in diffusive turbulence: no evident increasing or decreasing
trend may be seen. The weak Reynolds number, the random part of the forcing,
and the limited propagation distance away from the grid, due to the presence of
walls (that also perturbate the computation of the lengths), are certainly to blame for
this phenomenon. However, we shall see that these scales evolve consistently in the
rotating computations, with a growth of the lengths with vertical separation, and a
decrease of those at horizontal separation.

6.6. Rotating case

Decaying simulations in § 5 have brought to light an important effect of rotation due
to the action of walls, with the appearance of vortex structures in the wall region.
The present simulations are devoted to studying the combined effect of rotation,
confinement and local forcing, in order to identify long lasting vortex structures
aligned with the rotation axis. Their presence is suggested by the particular behaviour
of the various statistical quantities and eventually confirmed by visualizations. From
a statistical point of view, attention will be more specifically dedicated to study the
transitional Rossby number between the region close to the grid and the far region.

6.6.1. Reynolds and Rossby numbers

The validity of the rotating simulations depends on the Rossby and Reynolds
numbers in the flow. We have indeed noticed that these two parameters play a role
in the number and size of the organised structures created by the Coriolis force.
Therefore, periodicity conditions in the homogeneous directions (orthogonal to the
rotation axis) may interfere with the dynamics of the flow if these structures are too
large. In order to pick the best rotation rates in the presented simulations, we have
looked for a rough estimate of the number of structures depending on the Reynolds
and Rossby numbers, using low-resolution computations (48× 64× 64).

The first four runs are performed using a constant Rossby number Ro = 0.25 and a
variable Reynolds number, whereas the following four runs correspond to a constant
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Figure 22. Plot of the velocity field at fixed Rossby number Ro = 0.25 with
variable Reynolds number.

Reynolds number of Re = 100 and variable rotation rates. Figures 22 and 23 show
the velocity fields obtained in a plane orthogonal to the rotation axis, away from
the grid, and close to the upper wall. It is easy to see that the number of structures
increases with the Reynolds number and increases with the rotation rate (or with
the inverse of the Rossby number). The eight computations do not allow one to find
accurately a simple functional relating the number of structures and the Reynolds
and Rossby numbers. However, it seems that the population of vortices varies roughly
like Re/Ro, i.e. the inverse of the Ekman number Ek = Ro/Re. HBG have noted
in their experiment that the number of vortices and the inverse of the grid Rossby
number are proportional. They have also observed a ratio 4.5 between the spacing of
the vortices and their size, which is not found here because of the weakness of the
Reynolds number. Indeed, in the moderate-resolution simulations, no isolated vortex
appears, so that their size is roughly equal to their spacing.
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Figure 23. Plot of the velocity field at fixed Reynolds number Re = 100 and
variable Rossby number.

Figure 24, showing velocity fields when the steady state is attained, confirms the
relation between the number of vortices and the Rossby number in the physical and
numerical experiments, and illustrates our last remark about the spacing of vortices,
that the spacing and the size of the vortices are of the same order in the simulations.

6.6.2. Statistical analysis

In run R3, we use, as a reference, the weaker Rossby number in the HBG experi-
ment, Ro = 3. The parameter 2Ω is therefore tuned to 1

3
≈ 0.3, which corresponds to

a strong rotation rate. Upon looking at the results obtained in the non-rotating case,
it appears that the r.m.s. velocity at the level of the grid is of the order of 0.1. The
local Rossby number is therefore of the order of 0.3 at the grid. This domination of
rotation automatically eliminates the possibility of having a region close to the grid
where the flow would not be influenced by rotation. This computation can therefore
not give us any information about an eventual ‘structural’ transition, as observed by
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Figure 24. Qualitative comparisons between flow visualization in (a) the experiment by HBG at
RoG = 33.2 and (b) the simulation at RoG = 20; (c) the same experiment at RoG = 6.63 and (d) the
simulation at RoG = 3.

HBG. This constitutes the justification for performing runs R20 and R50, in view of
the observations made in § 6.6.1.

Energetics

Regarding the spatial evolution of energy, the three runs SR, R20 and R3 exhibit
an exponential decay, as found in the non-rotating case. However, the energy decay
rate is lower at high rotation rate, which is in agreement with the generally observed
reduction of energy transfer by rotation. Energy profiles are shown on figure 25(a).
Similarly, a strong anisotropy appears in the r.m.s. velocity components, with a
strengthening of the horizontal components (see figure 25b). Note that this does not
change the vertical velocity component since the total energy is larger than in the
non-rotating case. On this plot are presented the vertical component u1 mean profile
(also denoted uv), and the horizontal one uh = (u2 + u3)/2 for runs SR, R20 and R3.
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Figure 25. Mean profile of (a) kinetic energy for: −−−, run SR; · − ·, run R20; · · · ·, run R3.
(b) r.m.s. values of horizontal uh and vertical velocity components uv denoted by ◦, with the same
labels for the different runs.

Run R50 has a higher Reynolds, so that the stationary energy profile is significantly
higher than on the three previous runs.

Integral length scales

The evolution of the integral length scales for the three runs is shown on figure
26. It appears that the length scales with vertical separation have the expected
behaviour – referring to trends transposed from the homogeneous cases – since the
correlation in the vertical direction is larger at high rotation rate. The length with
horizontal separation evolves globally as expected, that is it decreases when the
rotation rate increases, hence showing the horizontal concentration of vortices. In run
R50, we should have expected this length to be larger than in run R20, the latter
corresponding to a smaller rotation rate, therefore to fewer structures of larger size
(see § 6.6.1). However, Lh,v rather seems to be of the same order as that in the high
rotation rate case R3. This is not necessarily a proof that vortices in these simulations
have similar sizes for we have to remember that the integral length scales are computed
by averaging over horizontal planes. In run R3, there are many structures, and this
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Figure 26. Mean profiles of the integral length scales Lh,v and Lh,h for: −−−, run SR;
− −, run R50; · − ·, run R20; · · · ·, run R3.

scale is a good estimate for their size. In run R50, only one isolated vortex remains
in the box, and such an averaging is no longer valid. This is important since it shows
that one has to be careful when trying to relate the length scales and the size of
eddies, in relation with intermittency, an important feature of two-dimensional flows.
In particular, visualizations are valuable in evaluating the degree of homogeneity of
the considered field.

One-dimensional spectra

Figure 27 shows the one-dimensional energy spectra at three locations above the grid
(x′ = 3.35, 5.90 and 8.70). We of course find that the energy is larger at larger rotation
rate, and decays away from the grid. Moreover, it appears that the spectrum changes
gradually when moving away from the grid, with smaller scales affected when the
distance increases. Above mode 8, which corresponds to the forcing, energy seems
to behave independently from the rotation rate, a clue that rotation is inefficient in
modifying the small scales.

In his study of homogeneous statistically steady turbulence, Hossain (1994) has
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Figure 27. One-dimensional spectra of energy at different locations above the grid. −−−, SR; − −,
R20 ; · · · ·, R3. The abcissa is the horizontal wavemode, i.e. the horizontal component of the
wavevector non-dimensionalized by the minimum one.
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presented three-dimensional energy spectra whose slope at wavenumbers larger than
the forcing one depends on the presence of rotation: the − 5

3
slope without rotation,

but a higher −3 one when strong rotation is applied. Comparing these spectral results
and ours therefore shows that the small scales of turbulence do not react to rotation
in the same way in either homogeneous or diffusive confined flows.

On the contrary, figure 27 demonstrates that the spectra are largely affected by
rotation in the large-scale region between modes 1 and 5. We more specifically detect
here the decrease of the energy transfer, since, in the rotating case, these modes remain
highly energetic with respect to the non rotating-one. Note that a strong trace of the
forcing at mode 8 is still present in spectra away from the grid, in the largest rotation
rate case.

Transitional Rossby number

In chronological order, we first performed simulation R3, then R20, and finally
R50. Runs R3 and R20 have the same resolution which could not give a definite
conclusion about whether the transitional Rossby number value given by HBG was
retrieved. Since the Reynolds number is the same in the two runs, and the rotation
rate decreases from R3 to R20, the latter has produced structures that are limited
by the size of the computational domain, and lead to too low Rossby numbers of
order 10−2–10−3. A simulation on CRAY T3E of IDRIS allowed us to increase the
resolution and the Reynolds number, while keeping the rotation rate low enough. In
this run, as we shall see in the visualizations, an isolated cyclone appears when the
local Rossby number is in the range 0.2–0.3, which corresponds to the value given
by HBG (1982). Yang (1992) has looked for the transitional Rossby number using a
different criterion: he locates the minimum of the time-scale inverse uh/Lh,h, before it
starts increasing again. This argument of minimum, rather than plateau, contradicts
the monotonic decrease of the Rossby number with the distance to the grid, and we
instead use an ‘objective’ visualization of the velocity field in planes orthogonal to
the rotation axis. The cyclone is well formed starting from the plane at x′ ≈ 6.5–7.0,
precisely the region where Rol ∼ 0.2–0.3.

Role of inertial waves and walls in the structuring of the flow

We follow here the analysis by Jacquin (1987) in order to estimate the relative
importance of the inertial waves and of confinement in the evolution of turbulence.
Three characteristic time scales can be identified:

(a) the decay time scale of homogeneous turbulence τ = L/u, L being an integral
length scale (L ≈ 1) and the amplitude u of fluctuating velocity (u ≈ 0.1);

(b) the time inertial waves take to propagate over the dimension of the tank,
τt = D/cg , where D is the size (between the forcing plane and the upper wall, making
it D ≈ 10) and cg = 2ΩM/(2π), M being the grid mesh size;

(c) the characteristic time associated with dissipation in the Ekman layer
τp = D/

√
2Ων.

By comparing these time scales, it is thus possible to get a clear picture of the relative
importance of the different mechanisms at play. As done by Jacquin, we compare
the ratios I = τt/τ and J = τp/τ, for the three rotating simulations. A low value of
I indicates a predominance of the inertial waves in the flow, while a low value of J
shows an acceleration of the turbulence decay rate, with respect to the homogeneous
case, due to extra dissipation in the Ekman layer. The values obtained are gathered in
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Run 2Ω τ τt τp cI = τt/τ J = τp/τ

R3 0.3 100 200 600 2 6
R20 0.05 100 1200 1500 12 15
R50 0.02 50 3000 2300 60 46

Table 6. Characteristic time scales for the different mechanisms: τ for the homogeneous decay, τt
for the propagation of the inertial waves, and τp for the wall effects.

ω1

0.006

–0.006

Figure 28. Close-up view of two structures identified using the NAM criterion, in run R3, close to
the upper wall. One is cyclonic associated with descending motion, the other one is anti-cyclonic
with ascending motion, illustrating the Ekman pumping. Vertical vorticity iso-surfaces are shown
in a horizontal plane at x = 5.3.

table 6. It confirms that inertial waves and wall effects influence the flow more when
the rotation rate is large.

6.6.3. Vortex identification

Visualizations are added to our previous statistical study, in order to complement
the conclusions we have drawn. In the previous § 5, vorticity fields were smooth
enough to allow direct use of a vorticity criterion in order to visualize the vortex
structures in the flow. It is no longer the case here, due to the strong inhomogeneity of
the vorticity field, and to the random component from the forcing, that introduce too
much perturbation and noise. We make use of a criterion called NAM (normalized
angular momentum), that has been shown by Michard et al. (1997) to be useful in
the post-processing of experimental and numerical data. Two vortices, anti-cyclonic
and cyclonic, are materialized in this way on figure 28, as well as the corresponding
velocity field. It can be observed that their identification by the NAM criterion is
in agreement with the location of strong vorticity, also represented in a plane on
figure 28. It is interesting to observe, using the velocity field also represented, that
helical motion is present within these vortices, either in the up or down directions.
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(b)(a)

Figure 29. (a) Materialization of three vortices by particle paths computed in the instantaneous
velocity field. The central vortex is cyclonic. (b) Regions of the flow identified by the behaviour of
particle paths for run R3 (the view is projected onto a vertical plane).

This motion is due to the Ekman pumping phenomenon, but the characteristic step
of the helix, away from the wall is δH ' 1, an order of magnitude larger than the
Ekman layer thickness δE ' 0.1. Of course, very close to the boundary, we recover
the fact that δH ' δE , in agreement with the Ekman pumping mechanism. Additional
information on the structuring of the flow can be drawn from the visualization of
‘streamlines’ described hereafter.

Streamlines for run R3

Although the paths we compute are not exactly fluid particle trajectories, since the
flow is unsteady, they exhibit interesting features, worth noting. First, figure 29(a)
shows the paths obtained by injection of the particles at the axis of the central vortex.
We see here that Ekman pumping is already present in the flow, for the central
vortex is cyclonic and associated with upward motion. On this figure, vortices extend
over half of the wall-to-wall distance. Figure 29(b) contains evidence of three distinct
regions, wherein the paths are quite different. We first identify region A close to the
grid, where the path seem to whirl around the forcing plane. Higher in the tank, the
motion becomes more vertically oriented, with a first effect of the rotation appearing
(region B). Finally, the last region C, extends up to the upper wall, and shows the
predominant effect of rotation with the appearance of vortex structures with axes
almost vertical. However, as already mentioned, the transition between zones A and
B for this run does not correspond to the transitional Rossby number in the HBG
experiment.

6.6.4. On the existence of intense cyclonic vortices

In the experiment by HBG, larger values of vorticity are associated with cyclonic
vortices. Here, figure 30 shows that the population of cyclones and anti-cyclones
is equivalent. It appears that the cyclones are not more intense than anti-cyclones,
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ω

Figure 30. For run R3: (a) plot of the velocity field in a horizontal plane, and of the
three-dimensional structures identified with the NAM criterion; (b) iso-lines of vertical vortic-
ity and three-dimensional structures identified by the NAM criterion.

at least in runs R3 and R20, a fact for which we shall now attempt to give an
interpretation.

There are certainly two important parameters (probably related in fact): the lifetime
of the apparent structures and the corresponding local Rossby number (as the ratio
of the characteristic vorticity of the structures to the rotation rate). Let W be the
characteristic vorticity of a vortex and the associated characteristic time scale τ = 1/W
(meaning the time necessary for the vortex to rotate once around its axis). The lifetime
of the structures can be roughly estimated, in numerical experiments, by following in
time the evolution of the velocity field in a plane close to the upper wall (x = 5.3).
This time d is non-dimensionalized by τ so that it represents the number of turnover
times the vortex can undergo before disappearing. Our various observations and
quantities have been reported in table 7.

It appears that the vorticity level is lower in runs R3 and R20 that are performed at
low Reynolds number, than in run R50 (where vorticity is strongest). It is interesting
to note that the lifetime of vortices obtained in run R3 is really small, therefore the
structures cannot exactly be qualified as ‘persistent’. Without this information on the
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Run W RoW = W/2Ω d Identified structures

R3 5× 10−3 ±0.015 6 1 Many;
as many cyclones
as anti-cyclones

R20 5× 10−3 ±0.1 ≈ 1 Larger, less numerous
R50 0.02 +1 > 3 An isolated cyclone

Table 7. Recap of the observations on the structuring of the flow in the different computations for
the rotating case.

Ω

Figure 31. Isolated cyclonic vortex obtained in run R50. The entire computational domain between
the two solid boundaries is outlined, in order to show the vertical extent of the coherent structure.
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life duration of the structures, the weak value of the local Rossby number, in view
of linear stability analyses, would have brought us to conclude wrongly that all the
vortices are stable. In run R20, the lifetime of vortices is a bit larger, with larger
vortices size.

In run R50, the Reynolds number being larger, the vorticity level is higher and
the local Rossby number is also larger (RoW = 1). It seems here that we recover
results from linear stability analyses, mentioned in § 2.3, since these predict unstable
anti-cyclones if RoW ≈ −1. There is indeed, in this run, evidence of only one cyclonic
vortex, shown on figure 31. Let us also note that the duration of this structure is quite
large (d > 3).

Finally, it appears that the domination of cyclonic vortices can exist only if the
Reynolds number is large enough, so that vortices can evolve quite independently on
a longer time range. A weak value of the Reynolds number seems to lead to a viscous
effect that links any cyclonic vortex to an anti-cyclonic one (much like mechanical
gears). In that case these pairs are quite short-lived.

7. Conclusion
This work has dealt with a numerical approach to rotating turbulence in a context

more complex than homogeneous turbulence. Generally speaking, our study shows
that rotation affects turbulence much more than in the simple homogeneous case,
when it is associated with other phenomena. Three kinds of simulations have shown
the main physical phenomena related to the evolution of confined rotating turbulent
flow. Namely, we have simulated the linear regime where inertial waves are clearly
observed, and we have identified separately the action of walls, in simulations of
freely decaying turbulence, and that of a localized forcing as in the experiment by
Hopfinger et al. (1982).

In the last case, we have chosen to perform a forcing which is as physical as possible,
i.e. which reproduces closely the effects of an oscillating grid. Our simulations have
shown that it is quite difficult to generate thick three-dimensional turbulent layers,
in which the Reynolds number does not decrease too fast. The closeness of the
numerical to experimental forcing has been obtained at the expense of low Reynolds
numbers, mainly due to the frequency of the grid and of the rotation parameter
whose combination imposes a severe numerical constraint.

Results of freely decaying turbulence simulations show that the walls and rotation
influence the energetics parameters and the structure of the flow. Concerning the non-
rotating case, results show first that the integral length scale with vertical separation
Lh,v is affected by the walls from the very beginning of the inhomogeneous case. Its
growth is slowed, showing a decrease of the correlation in the vertical direction with
respect to the homogeneous case. Second, the length scales tend to get blocked from
t/τ(0) = 20 in the homogeneous case, due to the size of the periodic box, whereas
the limitation of these scales in the inhomogeneous simulation have a physical
explanation which is the confinement of the turbulence structures. We observe the
peculiar behaviour of the skewness of derivatives of vertical and horizontal velocity
components. The fact that Sv is larger than Sh is in agreement with the physical
interpretation of the skewness: vortex stretching is weaker in the direction normal to
the walls. Considering the rotating cases, we note that the decrease of total kinetic
energy does not vary much from one run to the other, with the same ratio to the
non-rotating case. Although rotation is known to reduce the temporal decrease rate of
energy by reduction of the energy transfer, it is nonetheless a nonlinear phenomenon,
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when the Rossby number Rov is close to unity, provided the Reynolds number is large
enough. In the presented cases, the latter is quite low (≈ 18), due to limited computer
power, when the Rossby number crosses the critical value, so that linear effects of
rotation remain relatively important. In the rotating and non-rotating inhomogeneous
cases, the length scales with vertical separation grow, indicating an increase in the
correlations in the direction parallel to the rotation axis. The length scales with
horizontal separation decrease in agreement with the concentration of the vortices.
The Reynolds stress tensor anisotropy, seen from the evolution of b11, is larger in
the rotating case than in the non-rotating case. Rotation creates, with the interaction
of the walls, a vertical component which is damped at the walls in the absence of
rotation. We retrieve the critical Rossby number Rov = 1 usually found in studies of
homogeneous turbulence, but this value may change if the confinement effect on the
flow increases. The Ekman number based on the wall-to-wall distance is certainly an
important parameter on which depend the evolution of the statistical quantities.

From the above observations, in the forced case that leads to a stationary flow one
can expect similar mechanisms as in homogeneous rotating turbulence, by analogy of
the time decay of the latter to the spatial decay of forced turbulence away from the
grid. In the confined case with forcing, rotation reduces the energy transfer as well,
while it does not affect the small scales of the flow. The spatial decrease of energy
depends on the rotation rate, and in all cases (rotating or not) follows an exponential
law. This phenomenon is linked to the blocking of the integral length scales by the
confinement effect, as observed experimentally by Risso (1994). In the rotating cases,
these scales, in accordance with the corresponding visualizations, show an increase
of the correlation in the direction of the axis of rotation when the rotation rate
increases. In parallel, the length scales with horizontal separation are reduced, also in
accordance with the concentration of vortices. The structure of the flow tends to a
quasi-two-dimensional state when the rotation rate increases. Moreover, the rotating
simulations have led us to conclude that the number of vortices is linked to the
ratio Re/Ro, which is the inverse of the Ekman number; this statement has appeared
important in choosing the simulations parameters, such as the rotation rate and the
resolution. This has also permitted us to retrieve the transitional Rossby number given
by HBG (0.2–0.3), by using a larger Reynolds and Rossby number simulation. The
latter run has also shown that the lifetime of the coherent vortical structures is larger
when the Reynolds number is raised. In addition, when this condition is fulfilled, the
evolution and stability of the observed structures is in agreement with results of linear
stability analyses for isolated vortices, since cyclonic vortices are stable and appear to
be long-lived, whereas anti-cyclones disappear, due to the instability to perturbations
induced by the surrounding flow. Finally, the inertial waves and the walls influence
the flow more or less depending on the runs; this influence is largest when the rotation
rate is also largest. It appears that Ekman pumping is a very active phenomenon for
the structuring of the flow, with a trace of this effect appearing down to the forcing
plane.

From a more global viewpoint, the analysis of the analogy between transition pro-
cesses in rotating homogeneous turbulence and rotating diffusive turbulence between
walls, has to be taken carefully. In homogeneous turbulence, the transition from a
three-dimensional to a two-dimensional state is triggered by nonlinearities at high
Reynolds number. No such transition may appear from purely linear mechanisms.
During the time decay of initially isotropic homogeneous turbulence subjected to
rotation, the transition appears on a somewhat ‘slow’ basis. In our case of rotating
forced turbulence, the transition happens ‘abruptly’ in space, from an almost isotropic
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homogeneous turbulent region, close to the grid, to a strongly structured region that
extends up to the walls. This was also observed in the experiment by HBG. In this
respect, our simulations agree quite well with theirs, even considering the critical value
of the Rossby number. The experiment was however performed at higher Reynolds
number, so that the structuring and transition are due to combined nonlinear and lin-
ear effects. Our lower Reynolds number simulation contains mostly the linear effects
of rotation and confinement, namely inertial waves and Ekman pumping. Results
compare nonetheless well with the experiment, so that it may be concluded that even
weak nonlinearities, coupled to the strong effect of confinement, affect strongly the
structure of rotating turbulence.

The authors thank Dr Cambon for many fruitful discussions. The homogeneous
isotropic spectral code was provided by Professor Staquet. Calculations have been
partly performed on the Cray T3E of IDRIS (CNRS computer center), thanks to
computing time allocated by the Scientific Council of IDRIS.
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dans l’eau. Houille Blanche 22, 723–733.

Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear
flow. J. Fluid Mech. 36, 177–191.

Briggs, D. A., Ferziger, J. H., Koseff, J. R. & Monismith, S. G. 1996 Entrainment in a shear-free
turbulent mixing layer. J. Fluid Mech. 310, 215–242.

Cambon, C., Benoît, J.-P., Shao, L. & Jacquin, L. 1994 Stability analysis and large-eddy simulation
of rotating turbulence with organized eddies. J. Fluid Mech. 278, 175–200.

Cambon, C., Mansour, N. N. & Godeferd, F. S. 1997 Energy transfer in rotating turbulence. J.
Fluid Mech. 337, 303–332.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid
Dynamics. Springer.

Carnevale, G. F., Briscolini, M., Kloosterziel, R. C. & Vallis, G. K. 1997 Three-dimensionally
perturbed vortex tubes in a rotating flow. J. Fluid Mech. 341, 127–163.

Colin de Verdières, A. 1980 Quasi-geostrophic turbulence in a rotating homogeneous fluid.
Geophys. Astrophys. Fluid Dyn. 15, 213–251.

Craik, A. D. D. 1989 The stability of unbounded two- and three-dimensional flows subjected to
body forces: some exact solutions. J. Fluid Mech. 198, 275–292.

Dang, K. & Roy, Ph. 1985 Direct and large eddy simulations of homogeneous turbulence submitted
to solid body rotation. In Turbulent Shear Flows 5. Springer.

De Silva, I. P. D. & Fernando, H. J. S. 1994 Oscillating grids as a source of nearly isotropic
turbulence. Phys. Fluids 6, 2455–2464.

Drayton, M. J. 1993 Eulerian and Lagrangian study of inhomogeneous turbulence generated by
an oscillating grid. PhD thesis, University of Cambridge.

Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press (republished by
Breulelen Press, Brookline).

Heikes, K. E. & Maxworthy, T. 1982 Observations of inertial waves in a homogeneous rotating
fluid. J. Fluid Mech. 125, 319–345.

Hopfinger, E. J., Browand, F. K. & Gagne, Y. 1982 Turbulence and waves in a rotating tank. J.
Fluid Mech. 125, 505–534 (referred to herein as HBG).

Hopfinger, E. J. & Heijst, G. J. F. van 1993 Vortices in rotating fluids. Ann. Rev. Fluid Mech. 25,
241.



306 F. S. Godeferd and L. Lollini

Hopfinger, E. J. & Toly, J. A. 1976 Spatially decaying turbulence and its relation to mixing across
density interfaces. J. Fluid Mech. 78, 155–175.

Hossain, M. 1994 Reduction in the dimensionality of turbulence due to a strong rotation. Phys.
Fluids 6, 1077–1080.

Hossain, M. 1996 Inverse cascades in incompressible fluid and magnetofluid turbulence. J. Plasma
Phys. 56, 467.

Ibbetson, A. & Tritton, D. J. 1975 Experiments in turbulence in a rotating fluid. J. Fluid Mech.
68, 639–672.
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